这里能搜索到更多你想要的范文→
当前位置: 好范文网 > 心得体会 > 读后感 >

《怎样解题》读后感(精选多篇)

发布时间:2015-01-05 作者:小编 点击:加入收藏

目录

正文

第一篇:《怎样解题》读后感

波利亚(1887-1985)是美国著名的数学家和数学教育家。因长期从事数学教学,他对数学思维的一般规律有着深入的研究。这本开拓思维的《怎样解题》就是其研究成果的总结,并因此而畅销全球。

作者认为一个重大的发现可以解决一道重大的难题,而在解答任何一道题目的过程中,也会有点滴的发现。这句话颇有现实意义,人如果缺乏善于发现的眼睛和发现题目的本质,就无法摒弃无关紧要的繁琐条件和层层陷阱,就无法抓住问题的关键,因此也就无从下笔解答题目了。

作者也认为当你解答的题目并不陌生,有些似曾相识的时候可能会不以为然,但你若因此而感到有兴趣,并被好奇所激发时,你的创造力将被激起,并被发挥出来;特别是如果你用自己独一无二的方法做出时,你将饱含成就感。

作者建议我们不要只做一些简单的基础题,它只会扼杀我们对数学的热情;也别一味地做变态级的难题,那样会打击我们的自信心。

虽然在我看来,此书的实践性不及一般的教辅书,但其对数学领域中怎样进行正确、快速、有效地解题,有着一针见血的指导作用。作者在书中运用了大量活泼、生动、通俗的散文写法,阐述了一个又一个数学问题。作者在此书中还提出了一个史无前例的观点:学好数学不只在于练习、操作、演算,最重要的是从心底萌发出的对数学的浓厚兴趣与自我归纳理解后的解题思路。

读完全书,我最深的感受是我也爱上了数学。数学不仅是通向工程、技术的必由之路,它还充满着乐趣。

第二篇:怎样解题读后感

《怎样解题》波利亚

————读后感

著名数学家波利亚认为数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会学生思考的一种手段和途径.他专门研究解题的思维过程,分解解题的思维过程得到一张“怎样解题”表。

在数学学习中,一定量的解题训练是必不可少的,但仅依靠“题海战术”来进行解题训练是万万不可的,“题海战术”在能力培养方面主要表现为提高模仿力与复制力,而在大学期间的数学学习更注重学生数学素质和能力的考查,因此我们与其穷于应付繁琐过量的题目,还不如选择一个有意义但又不太复杂的题目去深入发掘题目的各个侧面,对与此相关的一系列问题都能有一个系统的认识和把握.波利亚在他的名著《怎样解题》中很好的阐述了这一思想.《怎样解题》一书中对数学解题理论的建设主要是通过“《怎样解题》表”来实现的,包括“弄清问题”、“拟定计划”、“实现计划”和“回顾”四大步骤的解题全过程。

波利亚在《怎样解题》中所阐述的,即波利亚“怎样解题”表。第一步:必须弄清问题。弄清问题即审题,是解题的基础。因为只有正确理解了题意,才能正确地树立解题的思维方法,找出解题途径。在这一步,解题者必须了解问题的文字叙述.然后通过观察、分析、画图等把文字、图形、符号等发出的信息正确的接收下来。把条件的

各个部分分开,充分挖掘题设的内涵,判清题型,审清问题。第二步:找出已知与未知的联系,如果找不出直接的联系.则要考虑辅助问题,最终得出一个求解的计划。拟订计划即探索解题的途径,这是解题的关键环节。当我们审清了问题之后, 熟悉的问题有一定的解题套路,不需要太多的思考;而对于不熟悉的题目,我们千万不要急于动笔演算,而是要在头脑中从整体上设计好一个解题思路,稍进一步的问题,需要有一点变化。一个正确的解题思路的形成过程是复杂的。它涉及解题者的知识因素、解题经验和解题能力。不过,从思维角度看,都是按照由果索因或由因导果而进行的。第三步:实现想法和计划。解题的核心即实现计划,就是根据所探索的思路付诸行动。在解题过程中,这一步是相对容易的。如果计划拟订完善,实现计划往往是做一些机械性的计算。但计划往往是不完善的,所以往往又需要回到上一步,出现一些反复。另外,计算或操作过程中也会存在某些困难,甚至会遇到难以逾越的困难.这时原来的计划就必须推翻重来,此时所需要的主要就是解题者的耐心。解题方案给出了一个解题的总体框架。我们必须耐心地对每一步进行严格推导和计算,确保每一步的细节都是正确的,必须考虑问题的所有条件,简明规范地把解决问题的全过程完整地表达出来;第四步:验算所得到的解。这一步相当于平时解题所说的“验算”,它不只是简单地核对答案,判断解题是否正确,进而找出错误并予以纠正,而是要用多种方法,从不同的角度去获得正确的结果,重要的是对解题结果或方法进行迁移思考,总结解题经验,扩大解题成果。正如波利亚所说:“这是领会方法的最佳时

机”,“当解题者完成了他的任务。而且他的体验在头脑中还是新鲜的时候,去回顾他所做的一切,可能有利于探索他刚才克服困难的实质。

波利亚的“怎样解题”表,其特点是:明显的普遍性与常识性;一连串的发问,给出思路与建议;提出的问题驱动解题者的思维按一定方向搜索、加工、分析、应用信息。改为现行的解题四程序:审题;思素解法;实施解题计划;检验、回顾、引拓。

“题海”是客观存在,我们应研究对付“题海”的战术.波利亚的“表”虽不如阿里巴巴的金钥匙,但却切实可行,给出了探索解题途径的可操作机制,只要按波利亚提出的这些问题和建议去寻找解法,在解题的过程中。必将使自己的思维受到良好的训练,久而久之,不仅提高了解题能力,而且养成了有益的思维习惯。

波利亚的“怎样解题表”中的四个阶段对问题解决具有开创性的意义。但是,与完整的元认知理论相比,也还存在着一些局限性。解题表作为一个解题的程序。忽视了对个体差异性的认识。缺乏对认知个体的认识。比如。解题表中没有关于学习者本人特点方面的知识,如学习的能力、动机、目的、爱好以及影响学习的其他各种个人特征与状态.关于记忆、理解等不同水平对不同个体解题活动影响涉及也较少。“怎样解题表”中的元认知观念相对于完整的元认知理论还是比较分散的.还不够系统化,是朴素的元认知,而后提出的元认知结构正是在此基础上进一步完善形成的理论系统。

第三篇:《怎样解题》读后感

《怎样解题》读后感

一直很喜欢读书,特别是文学方面的书籍,但是这学期所看的书,却让我的书史有了大改观。这学期所涉及要看的书,都是和教育有关的,虽然一直有做家教,之前也参加过支教活动,但是看完教育类的书籍后,却有点颠覆教育在我心里的印象。

《怎样解题》这本书初次接触,感觉很陌生,很难看的进去,相对于《小学数学名师同课异构》案例书来说,更加感到差异很大。

第一次看这本理论书,给我最大的不同是,似乎老师每次给学生讲解一道题目,都要从这道题先引申道另外一道题或者先问学生是否曾经做过类似的题目,然后再花费大量的时间去让学生解决类似的题目或者曾经做过的题目,最后再慢慢引到最开始的问题上,利用前面的题目的方法或定理再来解决最初的问题。回想起以前上学的情景,每当遇到问题的时候,问老师如何解题,老师都会先把题目理顺一遍,然后再告诉我们思路,最后再一边提问我们相关的定理或者概念,一边把题目讲解完,在这之后,如果题目比较典型,就在错题本或者在笔记本上把这道题记录下来,以后再次遇到类似的题目,则自己再回想之前的题目,想想是否能用相同的方法解题,或者直接翻开笔记本,再自己慢慢顺着思路把问题解决,大概遇到两次或者两次以上的类似题目后,都能够自己把问题解决,不需要翻开笔记或者问同学或老师。两者不一样的帮助学生的解题方法,感觉上都各有各的好处,但是不知道为什么感觉波利亚的教师帮助学生解题的方法感觉有点不太实际。

如果说老师要帮助每个学生解决他们不一样的难题,都需要用到先想类似的题目或者先回忆曾经做过类似的题目,再来慢慢引导学生把题目解决,这需要花费大量的时间,而每个老师的空闲时间有限,学生的问问题时间也有限,但是学生的难题却无限,这样下来,老师根本不能解决每个学生的问题,不能够完全帮助自己的学生,感觉有点不实际。但是如果老师把这种方法用在课堂上讲解典型的难题的时候,我觉得这却是比较好的一种方法,一方面可以巩固学生在之前所学的知识,另一方面,也可以扩展学生的题海,让学生能够更加牢固的学会解题的方法和做类似题目的思路,同时,也可以让成绩比较差的学生能够掌握该题的做题技巧。

当然,除了在感觉解题方式有点不太一样之外,在这本比较难懂的理论书之中,还是学会了一些解题的相关技巧和步骤。第一步:必须弄清问题,弄清问题即审题,是解题的基础;第二步:找出已知与未知的联系,如果找不出直接的联系.则要考虑辅助问题,最终得出一个求解的计划;第三步:实现想法和计划。解题的核心即实现计划,就是根据所探索的思路付诸行动;第四步:验算所得到的解。前三步在解题或者教学的过程中,一直都按照这个步骤进行,但是到了第四步骤时,基本上都会忘记或者根本没有想过要检验,除非是在考试的时候或者在有答案的情况下才会验算自己的答案。如果在教学的时候执行第四步,对学生提出:你能检验这个结果吗?你能检验这个结论吗?你能以不同的方式推导这个结果吗?你能一眼就看出它来吗?你能在别的什么题目中利用这个结果或者这种方法吗等,则能够让学生再次及时回顾刚才所学的知识和技巧,同时,也能让学生养成以这种方式回顾和仔细检查的习惯,会的一些条理分明、随时可以使用的知识,并且将提高学生的解题能力。

当然,想要做到能利用波利亚的解题方法,也并不是按照这个方法就能做到百分百成功,还需要积累一定的题目在自己的脑海里,以便自己随时能调用,但并不是题海战术就能解决这一切,而是需要每当自己做题的时候,能够同时充分利用波利亚的解题步骤,这样才能更加增大自己题量。不过,在利用波利亚的解题的步骤时,同时也需要注意到它的局限性,就是不能根据个人的特点来解题,没有做到因材施教,忽视了对个体差异性的认识,缺乏对认知个体的认识。而且在波利亚的解题步骤中,每个人是用都一样的方式来解题,忽略了学生在解题方面的兴趣、目的等,所以我们在解题的时候,也不能生搬硬套,需要灵活应用,这

样才能根据自身条件地完整地解决了一道题。

当然,这只是我第一次看这本书所得的初步感想,或许再次阅读这本书的时候,会有更深刻的理解。

第四篇:波利亚《怎样解题》读后感

《怎样解题》读书笔记

“学习难,学习数学更难”,许多人对数学望而生畏,大有谈虎色变的趋势。大家都有这样的经历:一道题,自己总也想不出解法,而别人却轻而易举地给出了一个绝妙的解法,这时你最希望知道的是“你是怎么想出这个解法的?为什么我没有想到呢?”有这么一个人,为了改变数学在公众心目中的形象,致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,很早就开始探索数学中的发明创造,他利用在大学任教的机会,通过与学生的交流和对学生的细致观察,认真研究了人们解题的过程,通过和一批数学大家的交流,花了整整三十年的时间,终于完成一篇著作,这本书指导了人们不仅仅是在数学中,乃至在任何其他领域中怎样进行正确思维,引导了一代又一代读者在学习中走上正确的道路。这个人就是著名数学家乔治?波利亚,这本著作就是《怎样解题》。

波利亚(1887-1985)是美国著名的数学家和数学教育家。上中学时,他就是一个很有上进心的学生,但每当遇较难的数学题时,他也时常感到困惑:“这个解答好像还行,他看起来是正确的,但怎样才能想到这样的解答呢?这个结论好像还行,他看起来是个事实,但别人是怎样发现这个事实的?我自己怎样才能想出或发现他们呢?”为了解决这个困惑,波利亚经过多年教学经验的累计以及与一批数学大家的交流,最终著出《怎样解题》这本书,一经出版,畅销全球。 在这本书中,波利亚表达了这样的观点:解题的价值不是答案的本身,而在于弄清“是怎样想到这个解法的?”、“是什么促使你这样想,这样做的?”这就是说,解题过程还是一个思维过程,是一个把知识与问题联系起来思考、分析、探索的过程。波利亚认为“对你自己提出问题是解决问题的开始”,“当你有目的地向自己提出问题时,它就变成你自己的问题了”,“怎样解题表”是《怎样解题》一书的精华,这张表是波利亚在分解解题的思维过程得到,表中所述看似很平常的解题步骤或方法,其实已包含几代人的智慧结晶和经验总结。“怎样解题”表将解题过程分成了四个步骤,包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”,在这其中,对第二步

即“拟定计划”的分析是最为引人入胜的。波利亚把寻找并发现解法的思维过程分解为五条建议和二十三个具有启发性的问题,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。波利亚推崇探索法,他认为现代探索法力求了解解题过程,特别是解题过程中典型有用的智力活动。他说《怎样解题》这本书就是实现这种计划的初步尝试,“怎样解题表”实质上就是试图诱发灵感的“智力活动表”。波利亚的“怎样解题”表的精髓是启发你去联想。联想什么?怎样联想?让我们看一看他在表中所提出的建议和启发性问题吧。“你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理???”波利亚说他在写这些东西时,脑子里重现了他过去在研究数学时解决问题的过程,实际上是他解决和研究问题时的思维过程的总结。这正是数学家在研究数学,特别是研究解题方法时的优势所在,绝非“纸上谈兵”。回过头来想一想,我们会发现自己在解决问题时的确或多或少地经历了这样一个过程。我们在解题时,为了找到解法,实际上也思考过表中的某些问题,只不过不自觉,没有意识到这些问题罢了。在解决实际问题时,我们可能又忽略许多解决问题的方法和细节。因此我们需要控制自己的思路,用顽强的意志不断地模仿解决问题的步骤和方法,争取达到灵活运用和创造性地解决问题的程度。按波利亚提出的这些问题和建议去寻找解法,在解题的过程中,必将使自己的思维受到良好的训练,久而久之,不仅提高了解题能力,而且养成了有益的思维习惯。如果能在平时的解题中不断实践和体会该表,必能很快就会发出和波利亚一样的感叹:“学数学是一种乐趣!”

在书中波利亚这样说:“一个重大的发现可以解决一道重大的难题,而在解答任何一道题目的过程中,也会有点滴的发现。”这句话颇有现实意义,人如果缺乏善于发现的眼睛和发现题目的本质,就无法摒弃无关紧要的繁琐条件和层层陷阱,就无法抓住问题的关键,因此也就无从下笔解答题目了。他还认为当你解答的题目并不陌生,有些似曾相识的时候可能会不以为然,但你若因此而感到有兴趣,并被好奇所激发时,你的创造力将被激起,并被发挥出来;特别是如果你用自己独一无二的方法做出时,你将饱含成就感,

从而更加激发你学习的热情和对问题探索的渴望。也就是说,学好数学不只在于练习、操作、演算,最重要的是从心底萌发出的对数学的浓厚兴趣与自我归纳理解后的解题思路。 书中还讲到了教师对于学生的解题应该进行怎样的指导,书的第一章节,为“在教室中”,分为“目的”“主要问题,主要部分”在“目的”这一节中,波利亚系统地指导了教师如何让帮助学生,他说:“教师最重要的任务就是帮助学生。学生应当获得尽可能多的独立工作的经验。但是如果让他独自面对问题而得不到任何帮助或者帮助得不够。那么他很可能没有进步。但若教师对他帮助过多,那么学生却又无事可干,教师对学生的帮助应当不多不少,恰使学生有一个合理的工作量。如果学生不太能够独立工作,那么教师也至少应当使他感觉自己是在独立工作。为了做到这一点,教师应当考虑周到地、不显眼地帮助学生。不过,对学生的帮助最好是顺乎自然。教师对学生应当设身处地,应当了解学生情况,应当弄清学生正在想什么,并且提出一个学生自己可能会产生的问题,或者指出一个学生自己可能会想出来的步骤。”而在指导学生的过程中,教师不免一而再,再而三地提出一些相同的问题,指出一些相同的步骤。例如,在大量的问题中,我们总是问:未知数是什么?我们可以变换提问的方法,以各种不同的方式提问同一个问题:求什么?你想找到什么?你假定求的是什么?这类问题的目的是把学生的注意力集中到未知数上。有时,我们用一条建议:看着未知数,来更为自然地达到同一效果。问题与建议都以同一效果为目的:即企图引起同样的思维活动。在波利亚看来,在与学生讨论的问题中,收集一些典型的有用问题和建议,并加以分类是有价值的。“怎样解题”表就包含了这类经过仔细挑选与安排的问题和建议;它们对于那些能独立解题的人也同样有用。而在读者们充分熟悉这张表并且看出在建议之后所应采取的行动之后,他们会感到这张表中所间接列举的是对解题很有用的典型思维活动。这些思维活动在表中的次序是按其发生的可能性大小排列的。表中所提问题与建议的重要特点之一是普遍性,当然,除去普遍性以外,它们也是自然的、简单的、显而易见的并且来自于普通常识。如果能够在遇到一些困难的问题的时候,我们能联想到与之相关却为我们所熟悉的内容,那么我们走的这条路也是对的。波

利亚指出,教师和学生在实践中,教师试图提高学生解题能力,必须培养学生的兴趣,然后给他们提供大量的机会去模仿与实践。如果教师想要在他的学生中发展相应于“如何解题”表中的问题与建议的思维活动,那么他就应该尽可能地经常而自然地向学生提出这些问题和建议。此外,当教师在全班面前解题时,他应当使其思路更吸引人一些,并且应当向自己提出那些在帮助学生时所使用的相同问题。由于这样的指导,学生将终于找到使用表中这些问题与建议的正确方法,并且这样做以后,他将学到比任何具体数学知识更为重要的东西。将此联系到实际中的数学学习问题,在如今应试教育的大环境下,现在教师的教学过程、学生的思维都比较的定式化,特别像是数学物理等理科,教师运用题海战术,学生只要多做多练,甚至背好题型就可以万事大吉了。但是学生很难出于自己的兴趣去解题,解题更多地被当做一种机械的条件反射的运动而不是思维活动。这样的问题有待于我们这些未来的教师去解决。 作为一名数学师范专业的学生,我想我从这本书中学到了太多,不仅仅解决了自身的学习问题,激发了自己对于解题的兴趣、学会了如何运用“怎样解题”表中的步骤解决问题,更学会了,作为一名教师应该如何指导学生解决问题,如何教育学生,读完这本书,(推荐打开范文网wWW.haOWOrD.cOm)我获益匪浅。

第五篇:怎样解题

《怎样解题》是由著名美国数学家和数学教育家波利亚所写得一部经久不衰的畅销书,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。

目录

内容简介

作者简介

目录

怎样解题表

编辑本段内容简介这本经久不衰的畅销书出自一位著名数学家的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。

编辑本段作者简介波利亚 ( 男) (george polya,1887—1985),著名美国数学家和数学教育家。生于匈牙利布达佩斯。1912年获布达佩斯大学博士学位。1914年至1940年在瑞士苏黎世工业大学任数学助理教授、副教授和教授,1928年后任数学系主任。1940年移居美国,历任布朗大学和斯坦福大学的教授。1976年当选美国国家科学院院士。还是匈牙利科学院、法兰西科学院、比利时布鲁塞尔国际哲学科学院和美国艺术和科学学院的院士。其数学研究涉及复变函数、概率论、数论、数学分析、组合数学等众多领域。1937年提出的波利亚计数定理是组合数学的重要工具。长期从事数学教学,对数学思维的一般规律有深入的研究,在这方面的名著有《怎样解题》、《数学的发现》、《数学与猜想》等,它们被译成多种文字,广为流传。

编辑本段目录第一部分 在教室里

目的

1.帮助学生

2.问题,建议,思维活动

3.普遍性

4.常识

5.教师和学生,模仿和实践

主要部分,主要问题

6.四个阶段

7.理解题目

8.例子

9.拟订方案

10.例子

11.执行方案

12.例子

编辑本段怎样解题表“怎样解题表”就是《怎样解题》一书的精华,该表被波利亚排在该书

的正文之前,并且在书中再三提到该表。实际上,该书就是“怎样解题表”的详细解释。波利亚的“怎样解题表”将解题过程分成了四个步骤,只要解题时按这四个步骤去做,必能成功。同学们如果能在平时的做题中不断实践和体会该表,必能很快就会发出和波利亚一样的感叹:“学数学是一种乐趣!”

第一,你必须弄清问题

弄清问题

未知数是什么?

已知数据(指已知数、已知图形和已知事项等的统称)是什么?

条件是什么?

满足条件是否可能?

要确定未知数,条件是否充分?

或者它是否不充分?或者是多余的?或者是矛盾的?

画张图。

引入适当的符号。

把条件的各个部分分开。你能否把它们写下来?

第二,找出已知数与求知数之间的联系。

如果找不出直接的联系,你可能不得不考虑辅助问题。

你应该最终得出一个求解的计划。

拟定计划

你以前见过它吗?你是否见过相同的问题而形式稍有不同?

你是否知道与此有关的问题?你是否知道一个可能用得上的定理?

看着未知数!试想出一个具有相同未知数或相似未知数的熟悉的问题。

这里有一个与你现在的问题有关,且早已解决的问题,你能应用它吗?

你能不能利用它?你能利用它的结果吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?

回到定义去。

如果你不能解决所提出的问题,可先解决一个与此有关的问题。你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其它数据?如果需要的话,你能不能改变未知数和数据,或者二者都改变,以使新未知数和新数据彼此更接近?

你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的所有必要的概念?

第三,实行你的计划。

实现计划

实现你的求解计划,检验每一步骤。

你能否清楚地看出这一步是正确的?你能否证明这一步是正确的?

第四,验算所得到的解。

回顾反思

你能否检验这个论证?你能否用别的方法导出这个结果?你能否一下子看出它来?你能不能把这结果或方法用于其它的问题?

《怎样解题》表是波利亚在分解解题的思维过程得到的,看似很平常的解题步骤或方法,其实却已包含几代人的智慧结晶和经验总结。在这张包括“弄清问题”、“拟定计划”、“实现计

划”和“回顾反思”四大步骤的解题全过程的解题表中,对第二步即“拟定计划”的分析是最为引人入胜的。他把寻找并发现解法的思维过程分解为五条建议和二十三个具有启发性的问题,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。波利亚推崇探索法,他认为现代探索法力求了解解题过程,特别是解题过程中典型有用的智力活动。他说《怎样解题》这本书就是实现这种计划的初步尝试,“怎样解题表”实质上就是试图诱发灵感的“智力活动表”。波利亚的《怎样解题》表的精髓是启发你去联想。联想什么?怎样联想?让我们看一看他在表中所提出的建议和启发性问题吧。“你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理???”波利亚说他在写这些东西时,脑子里重现了他过去在研究数学时解决问题的过程,实际上是他解决和研究问题时的思维过程的总结。这正是数学家在研究数学,特别是研究解题方法时的优势所在,绝非“纸上谈兵”。回过头来想一想,我们会发现自己在解决问题时的确或多或少地经历了这样一个过程。

我们在解题时,为了找到解法,实际上也思考过表中的某些问题,只不过不自觉,没有意识到这些问题罢了。在解决实际问题时,我们可能又忽略许多解决问题的方法和细节。因此我们需要控制自己的思路,用顽强的意志不断地模仿解决问题的步骤和方法,争取达到灵活运用和创造性地解决问题的程度。按波利亚提出的这些问题和建议去寻找解法,在解题的过程中,必将使自己的思维受到良好的训练,久而久之,不仅提高了解题能力,而且养成了有益的思维习惯。

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

生活中,碰到一个的问题的时候,我们如何解决?首先我们明确要解决的问题,然后搜集相关情报或者已有的资源,考虑问题关键因素之间的内在规律,接着尝试一些可行的方案,最后选择其中最优的办法实践,最后问题得以解决。对于数学解题来说:首先我们明确未知量,然后明确已知量,确定条件,接着尝试一些可行的方案,最终得到可以获得未知量的方案,解出题目。

然而这里有一个模糊的地方,解决问题最关键的一步——想出可行的方案,是如何办到的?当我们对未知、已知、条件都已经了如指掌之后还是想不出任何的方案,这个时候解题面临本质的智力困难的时候,是如何从无到有思考出可能的方案供我们尝试的?

这个问题更有画面感的描述是:数学课,老师出了一道几何题,先让大家试解,无人能解。然后老师开始讲题,前面的步骤1、2、3大家都会也都想到了,这时老师添加了一条辅助线,

引出步骤4,问题得解,大家豁然开朗。然而,解题的关键步骤3到4是如何思考到的呢,老师为何就想到做这一条辅助线呢?

《怎样解题》就是在回答以上问题。

书中有一个例子可以形象的问答这个问题:

一个原始人站在一条小溪前,他想要越过这条小溪,但溪水经过昨天一夜,已经涨了上来;因此他面临一个问题:如何越过这条小溪。渡溪成了这道题目的研究对象,是原始题目中的x。这个人可能会回忆起,他以前曾经踏着一颗倒下的树度过了另外一条溪流。于是他四处寻找一颗合适的树,就构成了他新的未知量y。他找不到合适的树,但是沿着溪流有大量的树木在岸上,他希望其中有一个树会倒下来。于是他开始想如何使一棵树横倒在溪流上?这样又产生了一个新的未知量z。这一连串的念头就是分析。如果这个人成功的完成了分析,他可能就成了桥和斧子的发明者。

而这个分析问题的过程,正包含了普遍的解决问题中本质智力困难的方法。首先思考我们是否面临过同样或者类似的问题,即使没有,我们可以尝试想更简单的相关问题,可以是更普遍化的问题、更特殊化的问题,甚至只是问题中的一小部分问题。或者干脆来变化我们遇到的问题的已知情况,观察未知情况如何跟随变化;或者变化未知量;或者同时变化已知未知量,来观察问题如何变化。正是这样一个分解和重构问题的过程,使得我们逐渐逾越了问题的核心部分,得出了疑似可行的方案。然后我们验证疑似可行的方案,如果其中确有可行的,问题得解。如果没有,我们将重复以上的过程。

以上是我理解的《怎样解题》的主旨。

当然原著对分解和重构问题的过程做了更为细致、严谨的分析和探讨,并配以精妙的数学题示例来演示各种细节。作为一本数学方法著作,更难能可贵的是,波利亚颇为人性化的阐释了解题过程中的非智力因素——情感的作用。在书中的第三部分—探索法小词典中,“决心、希望、成功”“潜意识活动”“进展”三个词条都严谨、科学的阐述了情感是如何作用于我们解题过程的。

“决心会随着希望与无望、满意与沮丧而产生波动。如果我们认为答案即将来临,就很容易继续干下去,当我们看不到有什么克服困难的出路时,要坚持不懈就会很难。”“有超常天赋的人主要的优势也许在于一种常超的心理感受力。由于具有极度敏感的感受力,他能感觉到进展的细微标志,或者注意到这些标志的缺乏。”这些非智力因素对于我们解决生活和工作中的问题尤其重要,我们需要敏感的觉察来自情感脑的反馈,并加以利用,来帮助解决问题。举例来说,生活中碰到一个很复杂问题,在长期解决问题的过程中,有一段时间可能解决问题时没有明显的反馈给我们标志,最后我们沮丧的放弃了解决问题。然而很有可能的是,这个过程真是解决问题的关键期,实际上也是有标志出现的,只是当时的我们还不理解这些标志。由此可见非智力因素之于解决问题的重要性,我们需要能理解并加以利用。

第三部分的最后,波利亚还举出一个心理学试验:用一个缺了一条边的正方形围栏围住一只动物(狗、黑猩猩、母鸡、人类婴儿),在围栏的另一侧放上一个被试很想要的物体(对动物来说是食物,对人类婴儿来说是有趣的玩具),然后观察他们各自的行为。发现,狗在扒着围栏吠了几声发现无法通过的时候,不久便学会了从围栏的缺口的那一边绕出去,人类婴儿很快就学会了绕过障碍,而黑猩猩也学得很快(黑猩猩是和人类最近的灵长类亲属)。

“母鸡的行为就像那些面临问题的时候浑浑噩噩的人,试了一次又一次,最后靠一些运气碰巧成功,而不去深究成功的原因。但我们甚至也不应责怪母鸡的笨拙。要转过身从目标跑开,不一直盯着目标前进,不沿着直接的道路到达目标,确实有一定困难。母鸡的困难和我们的困难具有明显的类似性。”最后一句话貌似有些哲理,是全书严谨行文之中唯一有些文艺的一句。`

...............

本网推荐其他精彩范文:

怎样解题表

读《怎样解题》有感

从波利亚怎样解题

怎样解题表

《怎样解题》读书笔记

该篇《怎样解题》读后感(精选多篇)范文(全文共有12012个字)可完全免费阅读或下载全文。好范文网为全国范文类知名网站,复制或下载全文稍作修改便可使用,即刻完成写稿任务。下载全文: